

Regression and Gradient Descent

Source: Intro. to Machine Learning By Andrew Ng, Stanford, Coursera

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
	1534	315
	852	178
	•••	

Notation:

m = Number of training examples
x's = "input" variable / features
y's = "output" variable / "target" variable

Housing Prices (Portland, OR)

Predict real-valued output

Training Set	Size in feet ² (x)	Price (\$) in 1000's (y)
Hunnig Set	2104	460
	1416	232
	1534	315
	852	178
	•••	•••

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters
How to choose θ_i 's ?

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters: θ_0, θ_1

Cost Function (aka Loss Function):

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

Gradient descent

Have some function $J(\theta_0, \theta_1)$ Want $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Outline:

- Start with some $heta_0, heta_1$
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

}

(simultaneously update j = 0 and j = 1)

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1\text{)}$$
}

Correct: Simultaneous update

$$\begin{split} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{split}$$

Incorrect:

$$\begin{split} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{split}$$

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{2}{\partial \theta_j} \lim_{\substack{i=1 \ i=1 \ i=1$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\Theta} \left(\chi^{(i)} \right) - \chi^{(i)} \right)$$
$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\Theta} \left(\chi^{(i)} \right) - \chi^{(i)} \right). \quad \chi^{(i)}$$

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

(function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$

 $h_{\theta}(x)$

 $h_{\theta}(x)$

 $h_{\theta}(x)$

 $h_{\theta}(x)$

(function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$

 $h_{\theta}(x)$

 $h_{\theta}(x)$

(function of the parameters θ_0, θ_1)

Linear regression with gradient descent

Linear regression with Batch Gradient Descent

Stochastic gradient descent

- 1. Randomly shuffle dataset.
- 2. Repeat {

for
$$i := 1, ..., m$$
 {
 $\theta_j := \theta_j - \alpha(h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)}$
(for $j = 0, ..., n$)
}

Learning rate α is typically held constant. Can slowly decrease α over time if we want θ to converge. (E.g. $\alpha = \frac{\text{constl}}{|\text{iterationNumber} + \text{const2}}$)

Mini-Batch Gradient Descent

Say b = 10, m = 1000. Repeat {

for
$$i = 1, 11, 21, 31, \dots, 991$$
 {
 $\theta_j := \theta_j - \alpha \frac{1}{10} \sum_{k=i}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)}) x_j^{(k)}$
(for every $j = 0, \dots, n$)

Mini-batch gradient descent

Batch gradient descent: Use all *m* examples in each iteration

Stochastic gradient descent: Use 1 example in each iteration

Mini-batch gradient descent: Use *b* examples in each iteration

Advice for applying machine learning

Diagnosing bias vs. variance

Machine Learning

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

 $\begin{array}{ccc} & \text{Bias (underfit):} \\ \text{Cross validation} \\ \text{error)} \\ \text{Vorione} \\ \text{Vorione} \\ \text{Vorione} \\ \text{Variance (overfit):} \\ \end{array}$

>
$$J_{train}(\Theta)$$
 will be low
 $J_{cv}(\Theta)$ >> $J_{train}(\Theta)$

Advice for applying machine learning

Regularization and bias/variance

Machine Learning

Linear regression with regularization

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^m \theta_j^2$$
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$
$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

$$\begin{split} h_{\theta}(x) &= \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} \\ &= J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2} \\ &\Rightarrow J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \\ &= J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2} \\ &= J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2} \\ \end{split}$$

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

 $J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^m \theta_j^2$
 $\lambda = 0$
 $\lambda = 0.01$
 $\lambda = 0.02$
 $\lambda = 0.04$
 $\lambda = 0.08$
.
 $\lambda = 10$
Pick (say) $\theta^{(5)}$. Test error:

Model:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$
1. Try $\lambda = 0 \leftarrow \gamma \implies \min_{i=1} \mathbb{J}(\Theta) \implies \Theta^{(i)} \implies \mathbb{J}_{cu}(\Theta^{(i)})$
2. Try $\lambda = 0.01 \implies m_{in} \mathbb{J}(\Theta) \implies \Theta^{(i)} \implies \mathbb{J}_{cu}(\Theta^{(i)})$
3. Try $\lambda = 0.02 \implies m_{in} \mathbb{J}(\Theta) \implies \Theta^{(i)} \implies \mathbb{J}_{cu}(\Theta^{(i)})$
4. Try $\lambda = 0.04 \implies m_{in} \mathbb{J}(\Theta) \implies \Theta^{(i)} \implies \mathbb{J}_{cu}(\Theta^{(i)})$
5. Try $\lambda = 0.08 \implies m_{in} \mathbb{J}(\Theta) \implies \mathbb{J}_{cu}(\Theta^{(i)})$

$$\vdots$$
12. Try $\lambda = 10 \implies \mathbb{P}ick (say) \theta^{(5)}$. Test error: $\mathbb{J}tect (\Theta^{(i)})$

Bias/variance as a function of the regularization parameter λ

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$
$$J_{train}(\theta) = \frac{1}{2m} \sum_{\substack{i=1\\m_{cv}}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$$

Advice for applying machine learning

Learning curves

Machine Learning

Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{\substack{i=1\\m_{cv}}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$$

m (training set size)

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

High variance

error

If a learning algorithm is suffering from high variance, getting more training data is likely to help. <--

m (training set size)

Qop

Jtroin (0)

Advice for applying machine learning

Deciding what to try next (revisited)

Machine Learning

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc})$
- Try decreasing λ
- Try increasing λ

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples -> fixes high variance
- Try smaller sets of features -> fixe high voice
- Try getting additional features fixed high bias
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc}) \rightarrow \text{fixes high bias}$.
- Try decreasing $\lambda \rightarrow fixes$ high bias
- Try increasing $\lambda \rightarrow$ fixes high vorince